Pump Scheduling Optimization Using Asynchronous Parallel Evolutionary Algorithms
نویسندگان
چکیده
منابع مشابه
Concurrent Pump Scheduling and Storage Level Optimization Using Meta-Models and Evolutionary Algorithms
In spite of the growing computational power offered by the commodity hardware, fast pump scheduling of complex water distribution systems is still a challenge. In this paper, the Artificial Neural Network (ANN) meta-modeling technique has been employed with a Genetic Algorithm (GA) for simultaneously optimizing the pump operation and the tank levels at the ends of the cycle. The generalized GA+...
متن کاملParallel Optimization of Evolutionary Algorithms
A parallel two-level evolutionary algorithm which evolves genetic algorithms of maximum convergence velocity is presented. The meta-algorithm combines principles of evolution strategies and genetic algorithms in order to optimize continuous and discrete parameters of the genetic algorithms at the same time (mixed-integer optimization). The genetic algorithms which result from the meta-evolution...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملParallel Evolutionary Algorithms for Energy Aware Scheduling
Reducing energy consumption is an increasingly important issue in computing and embedded systems. In computing systems, minimizing energy consumption can significantly reduces the amount of energy bills. The demand for computing systems steadily increases and the cost of energy continues to rise. In embedded systems, reducing the use of energy allows to extend the autonomy of these systems. In ...
متن کاملA New Asynchronous Parallel Evolutionary Algorithm for Function Optimization
This paper introduces a new asynchronous parallel evolutionary algorithm (APEA) based on the island model for solving function optimization problems. Our fully distributed APEA overlaps the communication and computation efficiently and is inherently fault-tolerant in a large-scale distributed computing environment. For the scalable BUMP problem, our APEA algorithm achieves the best solution for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CLEI Electronic Journal
سال: 2018
ISSN: 0717-5000
DOI: 10.19153/cleiej.7.2.2